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Abstract—In this paper we construct simple arti-
ficial chemistries in order to gain an understanding
of how a chemical reaction network might emerge
from a state of relative disorder in non-living “pro-
tocells.” Such chemistries have relevance to origin
of life studies as well as artificial life research. We
present a model comprised of interacting polymers,
and specify two initial conditions: a distribution of
relatively disordered polymers and a fixed set of
reversible catalytic reactions. A genetic algorithm
is then used to find a set of reactions that exhibit
pre-specified behavior. Our results show that re-
action sets can be found to give polymer distri-
butions that are biased towards longer polymers.
We present examples of these protocell chemistries
and show that the reaction sets found are robust in
the sense that they produce desirable behavior in
equilibrium. Such a technique is useful because it
allows an investigator to determine whether a spe-
cific distribution can be produced, and if it can, a
reaction network can be found and then analyzed.

I. Introduction

Protocells are conjectured to be the precursors to
the first living cells on Earth. As membrane-bound
structures, protocells may have been capable of basic
functions which utilize the simple molecules thought
to exist under prebiotic conditions [9]. Protocells
could have formed by the self-assembly of bilayer
membranes. Studies have found that amphiphilic
molecules spontaneously accumulate at water/air and
water/oil interfaces, and self-assemble into membrane
structures by agitation or cycles of wetting and dry-
ing [7].

Given the formation of protocells, the pathway to
the emergence of cellular life would likely involve
metabolism formation and reproduction. Our focus
here is in the development of primitive protocellu-
lar metabolisms subsequent to membrane formation.
The emergence of catalytic and autocatalytic reaction
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sets is thought to be a crucial step in the evolution
of metabolisms [6]. We simulate a single protocell
containing short polymers and construct an artificial
chemistry to study how a chemical reaction network
might emerge and organize beginning from a state of
relative disorder. Recent work in this direction in-
cludes the autocatalytic reaction networks of Bagley,
et. al. [1], and the work of Fontana and Buss where a
λ-calculus formalism is employed to construct artifi-
cial chemistries [4]. Also relevant are Schuster’s mod-
els of selection for autocatalytic reactions (e.g. [10]).

II. Protocell Model

The protocell model we use is a simple mass-
conserving, well-stirred reactor. The simulated
molecules are linear polymers (chains) comprised of
a single type of molecule, a. The two types of interac-
tion are bonding (condensation) and breaking (cleav-
age) of simulated chemical bonds. Since our poly-
mers are chains of a single type, bonding and break-
ing function like arithmetic addition and subtraction:
bonding a monomer a to a 4-mer aaaa results in a
5-mer, aaaaa. Bonding and breaking operations are
influenced by efficiencies – parameters which reflect
the probability that a given polymer will undergo a
specific operation. For the results reported here, we
used a small protocell reactor in which we limit poly-
mer length to 34. This in turn limits the number of
allowable reactions, however the space of all possible
reaction sets is still quite large (on the order of 10400

for a reaction set containing 100 reactions).
A fixed initial distribution of polymers is used in all

experiments, and is of the form of a decaying expo-
nential: f(x) = 100e−(x−1)/10. Such a distribution is
a relatively disordered initial state (many short and
few long polymers), and is a plausible initial condition
for a protocell since larger polymers are more likely
to break as compared to smaller ones. We assume
all polymers are enclosed by an impermeable mem-
brane, and polymer interactions occur at random (see
Figure 1). We arbitrarily restrict interactions to be
catalytic, as discussed in the next section.
Time is simulated using “reaction cycles,” periods

in which the same number of polymer interactions oc-
cur, which is generally different than the number of
reactions executed. For example, if two polymers are



Fig. 1. Interacting polymers enclosed in a protocell.

chosen from the reactor (e.g., a 5-mer and 24-mer),
and there does not exist a reaction in the reaction list
that binds them together (to form a 29-mer), then no
reaction takes place, but it counts as an interaction.

III. Catalytic Reaction Sets

Given polymers A, B, C, and P , the reactions we
use in our model are of the following form:

A+B
C
⇀↽ P

where A, B, and P are reactants, and C is a cata-
lyst. Reactions are reversible, so that a product can
break into two shorter polymers when one of its bonds
is broken. Catalysts are polymers which increase the
speed of chemical reactions. In our model, since we
do not take into account reaction rates, the catalysts
act as switches: if the catalyst is present, a reaction
can proceed, otherwise the reaction cannot. Also, our
catalysts do not undergo any changes as can happen
in real reactions. Upon completion of a reaction, the
catalyst remains and may further catalyze other reac-
tions. An autocatalytic reaction occurs when one of
the reactants also catalyzes the reaction. Such reac-
tions are permitted in our model.
We denote the set of all possible catalytic reactions,

whether biochemically realistic or not, as R. We then
have two subsets of interest. Let Rb be the subset of
reactions that are biochemically realistic, and Rn be
a subset containing at most n reactions from R. For
our current study, we will use Rn with n = 100 in our
model and therefore in the genetic algorithm (GA)
search. The set Rb is the clear choice for modeling
prebiotic chemistries on Earth, and we plan to use Rb
in future models.
Because of the interrelationships that can form

within a catalytic set, we can view them as graph
structures. A simple catalytic reaction set is depicted
in Figure 2, where four reactions are shown. The sym-
bol “·” denotes a reaction, and dashed lines denote
catalysts. Since all reactions are catalyzed by poly-
mers within the network, this is an example of an

autocatalytic network. As an autocatalytic network,
this example shows how such networks can be thought
of as small chemical “engines.” Given an abundant
supply of monomers, and a high forward reaction ef-
ficiency, we can readily see the main output of this
engine: production of 4-mers and 5-mers.

aa aaaaa

aaaa

aaa

a

a+ a
aaaa
⇀↽ aa a+ aaa

aaaaa
⇀↽ aaaa

a+ aa
aaaa
⇀↽ aaa aa+ aaa

aaaaa
⇀↽ aaaaa

Fig. 2. Example of a catalytic reaction set: graphical
depiction (top) and reaction set (bottom). Reverse re-
actions are not shown explicitly in graph.

Reaction networks in the real world can exhibit
far greater complexity, and can be seen as adap-
tive systems that exhibit interesting dynamical behav-
iors. Representing the chemical reactions as a reaction
graph allows easier identification of cycles, dependen-
cies, and other properties.

IV. Experimental Setup

To automatically produce reaction sets we used a
genetic algorithm [5] as our search technique. Our
interest here is not to compare search techniques, al-
though that would be interesting and could result in
more effective search. Rather, since we are satisfied
with approximate solutions, and we anticipate scal-
ing up our simulations to handle vastly more complex
polymers with differing initial conditions (resulting in
extremely large search spaces), we find the flexibility
and effectiveness of the genetic algorithm well-suited
for these purposes.
Our objective is finding reaction sets (or equiva-

lently, reaction graphs) that can take the simple pro-
tocell polymers from an initial “disordered” distribu-
tion (of polymer lengths) to one that is biased to-
wards building up long polymers. We choose two tar-
get polymer distributions, called peak and target,
that reflect this buildup. These are shown in Fig-
ures 3 and 4, where each shows the target along with
the exponentially decreasing initial distribution. The



first is a flat peak of 70 polymers for the polymers of
lengths 21, 22, 23. The second is a linear increase
(slope of 10) for polymers of lengths 25–30. The
choice of these specific distributions was arbitrary, the
main requirements being an emphasis on forming long
polymers. Note that the targets are specified for a
small number of polymer lengths, with the remaining
lengths designated as don’t care.
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Fig. 3. The peak target distribution.
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Fig. 4. The slope target distribution.

Reaction sets were represented in the GA as ar-
rays of reactions, with each element of the array con-
taining the reactants A, B, C, as well as reaction
efficiencies (both forward and reverse). Note that
explicit encoding for the reaction product P is not
needed, and reverse reactions are implicitly encoded
using this method. Because we fixed the maximum
length of polymers to 34, we needed to prevent reac-
tions that formed 35-mers and above from occurring.
To accomplish this, A is constrained to represent poly-
mers of length 1 through 33, and B is constrained to
represent polymers of length (34 − len(A)). In this

way there are 289 combinations of A and B (from
d(N + 1)(N − 1)/4e, with N = 34). Each reaction
set contains 100 reactions (200 if forward and reverse
reactions are counted separately), thus each GA in-
dividual is an array of 100 elements. Excluding re-
action efficiencies, each reaction instance is one out
of 289 · 34 = 9826 possible reactions, and thus each
reaction set instance is one out of slightly less than
9826100 possible reaction sets.

The fitness of a given reaction set is computed as
follows. At the end of each reaction cycle, an error
is computed. The error is the absolute value between
the target and simulation quantity summed over all
fitness cases. The overall fitness is the minimum error
seen over all reaction cycles. Therefore a fitness of zero
is a perfect fit, and high-valued fitness values reflect
poor fitting of the target distribution (i.e., our fitness
function is a cost function, one that we wish to min-
imize). Each reaction cycle allowed for 100 polymer
interactions, and the total number of reaction cycles
was limited to 50. The GA is run for a maximum
of 200 generations using a population size of 500 in-
dividuals. The result of the run is designated as the
individual having the lowest fitness (error) value.

V. Experimental Results

We ran two experiments, each identical except for
the target polymer distributions (see Figures 3 and 4).
In each experiment we used the protocell model de-
scribed above, and ran 100 GA runs for sampling pur-
poses. Each run within an experiment was identi-
cal except for the stream of pseudo-random numbers
used.

In order to get a sense of how difficult it was to find
reaction sets that promote increasing complexity, we
plot the distribution of best-individual fitnesses from
each GA run in Figure 5. As can be seen, an error
value of five was the most frequent result in the peak
experiment (mean fitness 7.32) and an error value of
18 was most frequently found in the slope experiment
(mean fitness 18.09). Only one run (in the peak ex-
periment) produced an individual with perfect fitness
(error of zero). From these plots we can confirm that
the slope problem is more difficult – since the slope
problem has more points to fit. Also, we can say that
the lowest error reaction sets are not anomalous – the
results are all clustered near low values of error.

The results from the peak experiment are as follows.
Figure 6 shows the distribution of polymers resulting
from the best individual from generation 0. We see
that this randomly-generated reaction set is able to
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Fig. 5. Histogram showing frequency of best fitness values
found in 100 genetic algorithm runs. The left graph is
for the peak experiment and the slope experiment is
shown on the right. Lower fitness values correspond to
lower error and improved fitness.

effectively convert nearly all of its polymers shorter
than length 10 to longer polymers. It also produces
approximately half of the required 22-mer and 23-mer
polymers.
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Fig. 6. Distribution resulting from best individual of gen-
eration 0 of the peak experiment (distribution shown
as points, target as peak).

The distribution of polymers resulting from the best
individual from the peak experiment is shown in Fig-
ure 7. The corresponding reaction graph is shown
in Figure 8 where we have drawn a portion of the
reaction network showing only the most frequently
“executed” reactions. The distribution of polymers
achieves an error of zero since it exactly matches the
target peak. Notable here is the relative abundance
of 6-, 7-, 32- and 33-mers. To get a sense as to how
the target peak is reached, and why the levels of cer-
tain other polymers are elevated, we can look to the
reaction graph. There we see that 6-mers, which are
in relative abundance in the initial distribution, are
catalyzing the production of 34-mers from 33-mers

(also elevated), which produce 14-mers by splitting,
and 14-mers contribute to 23-mer production (one of
the target polymers) via 15-mer production. 6-mers
are also important in producing 8-mers which combine
with 15-mers to produce more 23-mers. Thus we can
see how 6-mers are an integral link in the production
chain of 23-mers. 7-mers are also in relative abun-
dance in the initial distribution, however their supply
is replenished by 29-mer splits, which also produce
22-mers (another target polymer). Length 7 poly-
mers also contribute to 23-mer production by acting
as a catalyst for 15-mer and 8-mer reactions. The re-
maining target polymer, the 21-mer, is produced by
combining 19- and 2-mers, and 17- and 4-mers. 21-
mers and 32-mers both catalyze the production of the
target 22-mers.
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Fig. 7. Best found distribution of polymers (points) and
target (peak) for the peak experiment.

The reactions in our protocell model can be viewed
in a producer/consumer manner. If the reaction

A+B
C
⇀↽ P proceeds in the forward direction, then A

and B are consumed, and P is produced. In the re-
verse direction, the opposite occurs. In order to build
longer polymers, it would follow that the evolved reac-
tion sets would need to be biased to producing longer
polymers. This trend can be seen in Figure 9, where
we show the distribution of polymers produced and
consumed in the best reaction set of the peak exper-
iment. With the exception of monomer production,
the “producer” distribution (top plot) shows a slight
tendency towards longer polymers. In the “consumer”
distribution, the bias is more pronounced. There we
see a lager bias towards consuming small polymers in
order to build larger ones.

The slope distribution was more difficult to attain
as compared to the peak problem. The best found re-
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Fig. 8. Reaction graph for highest fitness catalytic set
found in the peak experiment. Only the most fre-
quently used reactions are shown. Thick ovals indicate
the polymers that comprised the target peak.

action set had an error of 8 compared to the zero error
found in the peak experiment. Figures 10 and 11 show
the distributions of polymers at different generations
(0 and 118) from the GA run producing the highest fit-
ness reaction set. We can see that the generation zero
individual is producing larger polymers, and is able to
produce 26-mers in nearly the correct amount. The
best individual is able to fit the slope closely by first
producing polymers larger than 30, and then breaking
those down (via reverse reactions) into products con-
taining 25- through 30-mers. The reaction graph for
this reaction set shows many of the same character-
istics (short cycle formation, key polymers acting as
both reactants and catalysts, target polymers acting
as catalysts) as seen in the peak reaction graph.

Recall that the fitness evaluation gives feedback to
the smallest error seen at a given point in time. Natu-
rally we are also interested in the steady-state, or equi-
librium behavior. Although not explicitly designed
into the fitness calculation, we find that the resulting
reaction sets settle to fixed distributions that are exag-
gerations of the target distributions. For example, at
equilibrium in the peak problem, the distribution con-
tains a single large peak for 21-mers only. In the slope
problem, 27-mers are produced as the sole peak. Thus
we can infer that although the evolved catalytic net-
works have a few strong producer/consumer cycles,
each has one in particular that dominates at equilib-
rium.

We also examined the robustness of the best-found
reactions sets by varying the initial distributions. If
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Fig. 9. Distribution of polymer production and consump-
tion in the best-found reaction set for the peak experi-
ment. The top plot shows the net number of times each
polymer was a product of a reaction, and the bottom
plot shows the net number of times each polymer was
consumed in reactions.

a given reaction set produces a target peak given the
initial distribution it was trained on, it would be inter-
esting to know how sensitive the reaction set is when
starting from different initial distributions. Using the
best-found reaction sets from the peak experiment, we
tried a variety of differing initial distributions. In all
cases, the fitness values were between 14 and 18. The
equilibrium distributions, however, were nearly iden-
tical to the evolved equilibrium distributions. This
provides evidence that the evolved reaction sets are
robust in achieving the target distributions in equilib-
rium. Further experiments will examine robustness in
greater detail.

VI. Conclusion

We have presented highly simplified models of
molecular interactions occurring in protocells. We
demonstrated that small, artificial chemical reaction
networks can be synthesized to move a system of poly-
mers into states of increasing complexity. The reac-
tion sets found are robust in the sense that they pro-
duce desirable behavior in equilibrium. Such evolu-
tion of complexity is likely fundamental in the devel-
opment of artificial life structures. And while these
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Fig. 10. Distribution resulting from best individual of gen-
eration 0 of the slope experiment (distribution shown
as points, target as line segment).
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Fig. 11. Best found distribution of polymers (points) and
target (line segment) for the slope experiment.

chemistries are artificial, they nonetheless point the
way toward studies in which chemical realism can be
increased. Of great interest is to expand our model
of artificial protocellular chemistries to include mem-
brane functions, polymers containing more than one
type of molecule, and communities of interacting pro-
tocells.
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